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RESUMO 
Recentemente, um novo enfoque para tratar problemas de transporte e de logística em nível tático e operacional 
tem sido tratado na literatura. Dentro desse enfoque o sistema é visto como um conjunto de agentes formados por 
softwares inteligentes, cada um deles responsável por uma ou mais atividades e interagindo de forma autônoma 
entre eles. Neste artigo, esse conceito é usado para analisar um problema de coleta urbana e dinâmica de 
produtos, onde parte das tarefas planejadas e alocadas a um veículo pode ser eventualmente transferida para 
outros veículos sempre que a demanda excessiva de serviço seja prevista pelo sistema computacional de bordo. 
Com esse procedimento, a ocorrência de tarefas não cumpridas num ciclo diário pode ser consideravelmente 
reduzida. A metodologia dinâmica e estocástica inserida no modelo é baseada na Análise Sequencial.   
 
ABSTRACT 
In recent years, a new approach to treat transportation and logistics tactical and operational problems has 
emerged. It views the system as a set of intelligent software agents, each responsible for one or more activities 
and interacting autonomously among them. In the paper this concept is used to analyze an urban pick-up 
dynamic vehicle problem (DVRP) where part of the planned tasks assigned to a truck can eventually be 
transferred to other vehicles whenever an excessive service load is foreseen by the on-board computer system. 
With this procedure, the occurrence of unperformed tasks within a daily cycle can be dramatically reduced. The 
dynamic and stochastic methodological procedure inserted into the model is based on Sequential Analysis 
theory. 
 
1.INTRODUCTION 
The explosive growth in computer, communication, and information technology in recent 
years, together with dramatic changes in organizations and markets, have opened new forms 
of operating manufacturing and logistics activities in an integrated and collaborative way 
(Goel, 2008). To optimize performance supply chain functions must operate in a coordinated 
manner,  but the dynamics of the participants’ operations make it difficult in many instances. 
Truck breakdown, road traffic congestions, labor absences, customer’s cancel or 
postponement of orders, among other drawbacks generate deviations from the basic plan. 
Thus, the management of these integrated systems must actuate in a dynamic way, revising 
the plans and schedules whenever it becomes necessary. 
 
In recent years, a new form for managing integrated logistic services at the tactical and 
operational levels has emerged. The supply chain is viewed as a set of intelligent agents 
(software), each responsible for one or more activities, and each interacting with other agents 
in planning and performing their tasks. In this new form of acting, an agent is an autonomous 
goal oriented software process that operates asynchronously, communicating and coordinating 
with other participant agents as needed (Fox et al, 2000; Davidsson et al, 2005; Berger and 
Bierwirth, 2010). The theory of computational agents originated about twenty years ago when 
research in distributed artificial intelligence had been initiated. The modern agent concept 
made the real breakthrough a decade ago when the mainstream of Artificial Intelligence (AI) 
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research shifted from direct goal-seeking to rational behavior, and from the single to multiple 
cognitive entities acting in communities (Monostori et al, 2006). These developments also 
coincided with the evolution of networked-based computing, as well as novel, human-oriented 
software engineering methodologies (Monostoni et al, 2006). All these achievements led to 
what is considered now the agent paradigm, which can be resumed in (Wooldridge, 2000; 
Monostori et al, 2006): 
 

● An agent is a computational system that is situated in a dynamic environment and is 
capable of showing autonomous and intelligent behavior; 
● An agent may have an environment that includes other agents. The community of 
interacting agents, as a whole, operates as a multi-agent system. 
 

A multi-agent system is a loose aggregation of agents, each with clearly defined roles, 
responsibilities, and functionality (Becker et al, 2006). The smallest controlling entity in this 
approach (an agent) is described as anything that is able to “perceive its environment through 
sensors (hardware and software) and act upon that environment through actuators” (Russel 
and Norvig, 2003). In this paper, it will be presented and analyzed an agent-based approach to 
reduce the number of unperformed tasks in an urban freight distribution system. The rationale 
involved uses statistical Sequential Analysis to infer, during the servicing process, if traffic 
conditions will not permit the accomplishment of the planned tasks during the working day, 
thus transferring part of the jobs to other vehicles and leading to a collaborative servicing 
process among them. 
 
2. THE PROBLEM 
Dynamic Vehicle Routing Problems (DVRP) are receiving increased attention among 
researchers in the areas of transportation and logistics (Larsen, 2000; Ribeiro e Lorena, 2005; 
Larsen et al, 2007; Golden et al, 2008; Novaes e Burin, 2009). Such problems are usually 
related to efficiently assigning vehicles to tasks, such as picking-up and delivering cargo, or 
accomplishing other services in a previously defined order so that tasks are completed within 
a certain time limit and vehicle capacities are not exceeded (Figliozzi, 2007, 2010). In large 
cities such as São Paulo, Brazil, freight operators that deliver or pick-up cargo in such 
congested urban areas, tend to assign larger numbers of visits to their vehicles in order to 
increase revenue. This often leads to non-performed tasks at the end of the daily cycle-time, 
impairing the logistics service level and postponing the service to next day, or even later. This 
happens because, due to the volatile traffic conditions and the great number of random 
variables along the route, the vehicle cycle-time usually shows great variability. But even 
assuming that the fleet of vehicles has been well dimensioned, there are situations in which 
the traffic becomes exceptionally over congested due to severe accidents, unpredictable public 
transport strikes, abnormal weather conditions, etc. The objective of this paper is to present an 
agent-based dynamic model of assigning visiting tasks to a pick-up vehicle, in which one 
seeks to reduce as much as possible the number of unperformed tasks at the end of the 
working day. To attain this objective, an integrated working scheme is developed where part 
of the planned tasks assigned to a vehicle may be transferred to auxiliary vehicles whenever 
an excessive service load is foreseen by the on-board computer system.  
 
A Multi-Agent System (MAS) is a system consisting of independent intelligent control units 
linked to physical or functional entities such as vehicles, orders, etc. (Mes et al, 2007). Agents 
act autonomously by pursuing their own objectives and interact with each other using 
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informational exchange and negotiation mechanisms (Mes et al, 2007). In this application the 
agents are the vehicles which perform the on-route tasks (pick-up, maintenance services, etc.) 
plus the central depot which has supplementary vehicles that can be eventually assigned to the 
routes in case the other agents do not reach agreement to exchange tasks. In a more ample 
scheme, to be investigated further, other agents are to be added into the model, specifically 
suppliers and customer firms, each one with their own specific goals as, for example, on-time 
pick-up and deliveries, the lowest possible costs, etc. The dynamic methodological procedure 
inserted into the DVRP presented in this paper is taken from Sequential Analysis (Wald, 
1947; Lai 2001). Assuming a standard composite statistical hypothesis to be sequentially 
tested, the approach is sufficiently robust and can be extended to more complex situations. 
 
3. MEASURING TRAFFIC CONGESTION 
Traffic congestion is seen as a condition of traffic delay (i.e., when vehicle flow is slowed 
below reasonable speeds) because the number of vehicles trying to use a road exceeds the 
capacity of the network to handle it (Weisbrod et al, 2003). In addition to speed reduction, 
congestion also introduces variability in traffic conditions, which is known as travel time 
reliability (Cambridge Systematics, 2005). The resulting traffic slowdowns and travel time 
reliability produce negative effects on supply chain activities, including impacts on vehicle 
traveling costs, air quality and noise, labor efficiency, industrial and commercial productivity, 
customer service level, etc. The severity and pattern of congestion, as well as the effectiveness 
of alternative policies and interventions to address it, vary widely from place to place. That 
can depend on the size and layout of the urban area, its available transportation options, and 
the nature of its traffic generators (Weisbrod et al, 2003). Congestion is usually the result of 
seven root causes, often interacting with one another (Cambridge Systematics, 2005): (1) 
physical bottlenecks; (2) traffic incidents; (3) work zones (temporally reserved for 
construction and repair activities on the roadway); (4) weather conditions (5) traffic control 
devices (railroad grade crossings, poorly timed light signals, etc.); (6) special events; and (7) 
fluctuations in normal traffic.  
 
Another important traffic congestion classification is due to Brownfield et al (2003). The first 
type is recurrent congestion, which can be anticipated by road users that are acquainted with 
the route. The other type is non-recurrent congestion, which occurs at non-regular times at a 
site. It is unexpected and unpredictable by the driver. In our analysis, it is assumed that the 
logistics entity in charge of the urban distribution service is aware of all programmed events, 
i.e. it is fully prepared to cope with recurrent congestion. Thus, from the seven factors 
previously listed, causes 1, 3 and 5 are not considered in our application. Conversely, it is 
assumed that over-congested situations are originated by causes 2, 4, 6 and 7. Although there 
is no existing, universally accepted, quantitative definition for traffic congestion, its analysis 
must rely on easy to measure elements if its impacts are to be evaluated and compared across 
the range of situations considered in the investigation (Brownfield et al, 2003). One frequent 
assumption is to assume that an urban road link is congested if its average speed is below a 
given percentage of the local speed limit. In addition to average speed reduction to travelers, 
the sources of congestion also produce time variability known as travel time reliability 
(Cambridge Systematics, 2005), which can be defined in terms of how travel times vary 
within a pre-defined period. In practical terms, it is useful to fit statistical frequency 
distributions to travel time, to see how much variability exists in critical sites of the road 
network. Besides calculating the average time necessary to travel over a route segment, it is 
also useful to estimate the extra time needed by travelers to ensure a high rate of on-time 
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arrival at their destinations. This extra period, called “buffer time”, is statistically estimated 
from historical traffic data considering, for example, a 95th percentile travel time (Cambridge 
Systematics, 2005). Suppose we take a typical route segment with extension d, which can be 
traveled by a commercial vehicle in time 0t 0t  under normal circumstances. Historical data on 

that route, taken on a day-to-day basis, and covering the same road segment d, furnish the 
95% percentile travelling time 95%t . The buffer time is defined as the difference   

95% 0B t t   ,                                                                (1) 
and the buffer index  

 95% 0

0

t t

t
 
  .                                                                (2) 

Exceptionally, unpredictable and heavy traffic congestions, caused by severe accidents, public 
transport strikes, heavy storms, etc., may occur during certain working days. In these 

situations the travelling time increases sharply, with an average value 95%t t  . Let t be the 

average travelling time in a route in a generic working day. Then, one could say that the 

traffic conditions are normal if 95%t t , and over-congested if t t  . Moreover, if  95%t t t    
one would not decide immediately for any one of the alternatives, waiting for more 
information to take a decision. Of course, this is a typical statistical hypothesis testing. 
Nevertheless, an instantaneous travelling time increase is not, in itself, an indication of an 
over congested situation. In fact, many non-recurrent events have short duration, and their 
effects dissipate more or less rapidly. Furthermore, some recurrent events have local impact 
only, and their effects do not extend to other parts of the served region. Over-congested 
situations that are of interest in our analysis are the ones with broader geographical extension 
and longer duration, although in most cases they are no longer than 24 hours. Thus, travel 
time reliability covering an expressive subset of the urban region, seems to be a good 
judgmental criterion to evaluate it. And, in order to measure travel time reliability it is 
necessary to sequentially collect and analyze traffic data. With today’s onboard telematics and 
computing devices it is not difficult to collect and analyze real-time information on traveled 
distance, time and speed with satisfactory accuracy (Goel, 2008). In our study, the statistical 
inference process to detect an over-congested condition follows a sequential analysis 
methodology (Wald, 1947), which is described in the next section.  
 
4. DYNAMIC DETECTION OF OVER-CONGESTED TRAFFIC    
Day-to-day traffic flow variability in urban networks produces typical traffic patterns, but 
unexpected events occasionally cause surges in traffic volumes that overwhelm the road 
system. Such events, of a “hectic” pattern, are generated by severe accidents with lasting 
traffic interruptions, extensive public transportation strikes, long duration storms, among 
others. Strong changes in some characteristic properties of a system may occur occasionally 
in both technological and natural worlds. And due to today’s availability of information 
processing systems, complex monitoring algorithms have been developed and implemented 
(Basseville and Nikiforov, 1993). The key difficulty in detecting a fault occurrence through 
the observation of some properties of a system is to separate noise from the relevant factors. 
In addition, some failures have a catastrophic nature, leading to an abrupt change in the 
control variables. But some faults occur with gradual modifications along time, and are often 
represented by additive changes in the corresponding stochastic model. One way of tackling 
such kind of problems is Sequential Analysis (Wald, 1947; Basseville and Nikiforov, 1993; 
Lai, 2001).  
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Classical techniques of statistical inference and hypotheses testing adopt a fixed sample size. 
With this kind of approach one seeks to minimize the error probabilities for a given sample 
size. The size of the sample is defined beforehand, and following its statistical analysis, one of 
two possible actions is taken: accept the null hypothesis H0, or accept the alternative 
hypothesis H1. The null hypothesis represents in our analysis the standard or basic situation, 
whereas the alternative hypothesis indicates the occurrence of an abnormal condition. Another 
way to solve hypotheses testing problems when the sample size is not fixed a priori but 
depends upon the data that have already been observed, is Sequential Analysis.  Now the 
problem is the following: for given error probabilities, try to minimize the sample size, or 
equivalently, make the decision with as few observations as possible. Contrary to the fixed 
sample size approach, a third possible course of action may occur in sequential analysis when 
the evidence is ambiguous: take more observations until the evidence strongly favors one of 
the two hypotheses. Thus, sequential analysis follows a dynamic sequence of observations in 
such a way that the decision to terminate or not the experiment depends, at each stage, on the 
previous test results.  
 
Although some authors date the rudiments of sequential analysis to the works of Huyghens, 
Bernoulli, and Laplace, it was effectively born in response to demands for more efficient 
testing of anti-aircraft gunnery during World War II, culminating with the development of the 
Sequential Probability Ratio Test (SPRT) by Wald, in 1943 (Lai, 2001). A typical case of 
sequential estimation arises when only one unknown parameter    is required to define the 
distribution of the random variable x object of our analysis. Let ( , )f x   denote the 
probability density function of x, when x is continuous. Conversely, if x is discrete, ( , )f x   

represents its probability. Let 1 2,  ,...,  mx x x  be a set of m sequential and independent 

observations on x. Because of the independence of the observations, the joint probability 
density function is 

1 2( , ) ( , )... ( , ).mf x f x f x                                                      (3) 

 
4.1 Sequential test of simple hypothesis 
Suppose that it is desired to test the simple hypothesis that 0  . This hypothesis is the null 

hypothesis denoted by 0H . The alternative hypothesis that 1   will be denoted by 1H . 

Thus, we shall deal with the problem of testing the simple hypothesis 0H  against the 

alternative simple hypothesis 1H  , on the basis of a sample of m independent observations 

1 2,  ,...,  mx x x  on x. According to the developments of Neyman and Pearson, errors of two 

kinds are present when one accepts or rejects hypothesis 0H . We commit an error of the first 

kind if we reject 0H  when it is true. On the other hand, we commit an error of the second 

kind if we accept 0H when 1H is true. We denote the probability of an error of the first kind 

by  , and the probability of an error of second kind by  .  
 
To apply the Sequential Probability Ratio Test (SPRT) developed by Wald (1947) for testing 

0 0:H    against 1 1:H   , two positive constants A and B  (B < A) are computed  
        (1 ) /A           and   /(1 )B    .                                           (4) 
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Suppose one draws m samples, leading to the independent observations 1,..., mx x  on the 
random variable x. At this stage of the experiment the SPRT  (Wald, 1947; Basseville and 
Nikiforov, 1993; Lai, 2001) is computed 

1 1 2 1 1

1 0 2 0 0

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )
m

m
m

f x f x f x

f x f x f x

  


  
 .                                             (5) 

Three situations may occur: 
(a)  If mB A  , the experiment continues  by taking an additional observation; 
(b)  If m A  , the experiment is terminated with the rejection of 0H ; 
(c)  If m B  , the experiment is terminated with the acceptance of 0H . 

For purposes of mathematical simplification it is more convenient to compute the logarithm 
of the ratio m . Let 

1

0

( , )
ln

( , )
i

i
i

f x
z

f x




 
  

 
.                                                            (6) 

Define 
*

1 2ln( ) ...m m mz z z      .                                                     (7) 

The test is addictive now. The experiment continues if *ln   lnmB A   by taking an 

additional observation; the process terminates with the rejection of 0H  if * lnm A  ; and it 

terminates with the acceptance of  0H  if  
* lnm B  .  

 
4.2 Sequential tests of composite hypothesis 
In practical cases, composite hypothesis can occur. One way to solve sequential analysis 
problems with composite hypothesis is the method of a weighting function associated with the 
generalized likelihood ratio algorithm (Basseville and Nikiforov, 1993). To do this, two 
weighting probability distributions, with density functions 0( )g H  and 1( )g H , depending on 

0H  and 1H  respectively, are introduced into the model. The SPRT is transformed now into a 
weighted likelihood ratio test (Basseville and Nikiforov, 1993). But, in order to do this, it is 
necessary to fit distributions 0( )g H and 1( )g H to real data, which depends on detailed 
information not commonly available in developing country environments. In the application 
considered in this paper, a more tractable composite hypothesis test can be adopted. This 
composite hypothesis testing is represented by '

0 0:  H    versus '
1 1:H   , such that 

1 0.  This model is usually sufficient for practical purposes (Lai, 2001). Assuming that the 
probabilities of the errors of first and second kind also do not exceed   and  , one can use 
the SPRT of the simple hypothesis 0 0:H    versus 1 1:H    with the same error 
probabilities  and  . However, while this SPRT has minimum expected sample size at 

0   and at 1  , its maximum expected sample size over   can be considerably larger 
than the optimal fixed sample size (Lai, 2001). This means that sometimes the sequential test 
will not be sufficient to detect hypothesis 1H  during the daily tour, generating unperformed 
tasks at the end of the working day. But the rate of unperformed tasks will be drastically 
reduced when compared with the static alternative, as it will be shown in Section 6, a fact that 
justifies its adoption in our model. 
 
In this application, the variable that commands the decision whether to seek help from another 
agent or to proceed along the planned routing process is the vehicle displacement time. This is 
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because the route within the district is fixed beforehand, and the stopping times to serve the 
clients are supposed not to depend on traffic conditions. Thus, the average displacement time 
reflects reasonably well the traffic conditions in our application, as it was analyzed in Section 
3. But, since link lengths vary along the route, and consequently the displacement time, speed 
is a more appropriate variable to measure traffic conditions. The renewal epochs of the 
sequential decision process are the instants when the vehicles are ready to depart from one 
client location to the next stop. At such an instant, the onboard computer evaluates the 
displacement time t over the traveled segment linking the last visit to the present one. The 
corresponding speed s is simply obtained by dividing the travelled segment extension by the 
respective time, both elements available on the onboard computer. For the analyzed district 

there are historical values for the travelling times and for the travelling time t  related to the 
over-congested condition. This information, together with the series of data collected up to 
that point, will serve as the basis for inferring whether the traffic condition is normal or over-
congested, thus leading to the appropriate operational decision.  As discussed in Section 4.1, it 
is necessary to define a probabilistic distribution ( , )f x   to represent the variable that 
commands the decision process. Suppose it was gathered a sample of travelling times in the 
route inside the district under analysis, which is 15.8 km long. The resulting travelling time 
frequencies are exhibited in Figure 1. The mean travel time is 33 minutes, corresponding to an 
average speed of 28.7 km/hr.  In the sequel, the cumulative speed frequencies are determined, 
generating the graph of Figure 2. Two different Erlang distributions were fitted to the data, 
one with 2   and the other with 3  . Here the variable x is represented by the speed 
displaced by 10, i.e., ( 10)x s   km/hr. It is seen in Figure 2 that the  Erlang distribution 
with 3  fits better to the data mainly in the lower extreme, a region of  more importance for 
our analysis where the critical speeds occur. The Erlang distribution of a continuous variable 
x, of order  , has the following probability density function 

1( , )   
( 1)!

xf x x e


 


 


, with 1,2,...,   , 0  , 0x  ,                          (8) 

with / [ ]E x   and 2var[ ] /x   . In this application, hypothesis 0H corresponds to 

0[ ] 28.7 10 18.7E x    km/hr, with 0 0/ [ ] 3 /18.7 0.16043E x    . Over-congested 

situations, on the other hand, occur when 15s  km/hr, leading to 1[ ] 15 10 5E x    km/hr  

and  1 3 / 5 0.6   .  

 
 
 
 
 
 
 
 
 
 
              Figure 1  - Travel time distribution on a 15.8 km long route segment 
 
Now, substituting (8) into (6) and (7), and simplifying, one has  
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* 1
1 0

10

  ln ( )
m

m i
i

m s
   
 

 
   

 
 ,                                                 (9) 

where m is the number of sequential tests, si is the speed observed in the last route segment,  
and *

m  is the control variable of the SPRT. 

 
 
 
 
 
 
 
 
 
 
 
 
                     Figure 2 – Erlang distribution fitting to the travelling speed 

              
5. STATIC SOLUTION 
Let us take a district (Figure 3), containing 25 suppliers. The district is located 9.5 km from 
the central depot. The logistics operator has been contracted to collect components from those 
suppliers, take them to the central depot, transfer the cargo to long-haul trucks, and deliver the 
components to client’s factories located in 
another towns. On-time delivery is an important 
logistics attribute, meaning that unperformed 
pick-ups along the route causes large safety 
inventory costs and manufacturing delays. 
Therefore, the number of undone tasks during a 
daily cycle is an important control variable. It is 
assumed that the limiting factor in the routing 
process is time. The time to go from the depot 
to the district and vice-versa, the displacement 
time between two successive suppliers in the 
route, as well as the servicing time (stop time at 
the supplier premises) vary according to log-
normal distributions (Larsen, 2000). The line-
haul displacement time has a coefficient of 
variation 0.2HCV  , with 0.35zCV   for the displacement time within the district, and 

0.45tCV   for the picking-up time at the suppliers. The average pick-up time at one supplier 

is 11 minutes. Taking the 25 points shown in Figure 3, it was applied a 3-opt algorithm (Syslo 
et al, 2006) to solve the corresponding Travelling Salesman Problem (TSP), resulting in the 
route sequence depicted in that figure. 
 
A simulation was performed with 10,000 replications and considering the time sequence 
along the route, comprising: (a) the displacement time from the depot to the first supplier 
(number 1, Figure 1); (b) the service time at the first stop; (c) the displacement to the next 

20



point, etc., up to the last visit or when there is no time available to perform additional visits, 
also considering the return time to the depot. The maximum daily working time was assumed 
to be 8 hours. Considering days of normal traffic only (average speed of 28.7 km/hr), the 
resulting expected cycle time was 6.99 hr, with expected maximum cycle time equal to 7.9 hr 
(98% confidence), within the working time limit. For this situation it was observed a 0.19% 
rate of unperformed tasks. No more than 3 returns were observed for one same truck, with 3 
returns occurring in only 0.004% of the cases, which is a quite negligible situation.  
 
Next, considering over-congested days, with 15s   km/hr, the situation changes significantly. 
Now, 4.3% of the tasks are not performed during the cycle time, being postponed to the next 
day or even later. There will be days when up to six pick-up tasks will not be performed. Even 
if the occurrence of over-congested traffic situations is scarce, the performance disruption is 
generally not acceptable under present day logistic standards, requiring an improved solution. 
 
6. DYNAMIC SOLUTION 
After completing a visiting task in the tour, the vehicle on-board system applies the SPRT test 
through relation (9) in order to infer which hypothesis is binding, or if it is necessary to 
proceed further with the test. Figure 4 shows a schematic representation of the vehicle routing 
sequence and the decision stages where the SPRT is performed. Assume that the vehicle agent 
A (Figure 4) left the depot with the assignment of 25 visits. Suppose the sequential test 

indicates the acceptance of hypothesis  1H  at stage 3, as shown in Figure 4. At this point, the 

on-board computer checks how many of the remaining visits should be transferred to another 
vehicle agent B. Let k be the number of visits to be transferred. Upon negotiation, agent B 
agrees to perform the k tasks. Of course, if there are two or more visits to be transferred, more 
than one agent can be involved in the transference. 

 

 

 

 

 

                   Figure 4 – The vehicle routing sequence and the decision stages 

Let us analyze one specific day with over-congested traffic conditions. It is assumed 
0.01   , leading to ln 4.59512A  and ln 4.59512B   . Table 1 shows the sequential 

analysis process up to stage 7, when hypothesis H1  has been detected. It is seen in Table 1 

that the controlling coefficient *
m  is in the interval   *ln   lnmB A   for stages 1 to 6. This 

indicates that the sequential test must proceed further. At stage 7, the parameter  *
m  surpasses 

the value of  ln A , meaning hypothesis 1H  was detected, and thus leading to the exchange of 

tasks among agents. In this application, the occurrence of the transition stages varies from 
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stop 6 to stop 18, as shown in Figure 5, with greater concentration around stage 9. When the 
transition stage occurs much later in the tour sequence, the transference of visits to other 
agents may not be accepted due to the higher risk of miss accomplishment of tasks. But a 
good part of the tasks to be transferred are usually situated in less critical points along the  
tour.  The simulation of the agent-based dynamic model, with 10,000 replications and for the 
critical over-congested situation, resulted in 11,8% tasks transferred to other vehicles agents 
in average, and only 0.004% unperformed visits. Compared with the percentage of 4.3% 
unperformed visits that occurred in the corresponding static alternative, this result is quite 
significant. But the transference of tasks is somewhat large since, for a 25-client route, there 
would be an average of almost three visits transferred per cycle. One possibility is to improve 
the inference model, adding information (intelligence) from other sources, and anticipating 
the decision points.  

     Table 1 – Sequential analysis test for one specific working day 
  Stage m 
(equation 
9) 
 

Speed si in the last 
route segment    

(km/hr) 

Cumulative speed

          
1

m

i
i

s

             

*
m

 (equation 9)
 

Decision to be 
taken 

1 11.0 11.0 0.34690 Continue testing 
2 6.7 17.7 1.29084 Continue testing
3 8.9 26.6 1.93109 Continue testing
4 12.5 39.1 2.06101 Continue testing 
5 11.2 50.3 2.36947 Continue testing
6 4.8 55.1 3.57418 Continue testing
7 4.5 59.6 4.82893 H1 confirmed 

 

 

 

 

 

 

 

                   
 
                    Figure 5. Sequential analysis: the frequency of transition stages 
 
 
7. TASK TRANSFER AMONG AGENTS 
At the present stage of the study, three types of collaborative agents participate in the process 
(Goel and Gruhn, 2006): (a) vehicle agents; (b) task assignment agent; (c) auction manager 
agent (Mes et al, 2007). Each vehicle constitutes a separate vehicle agent, analyzing the 
performance of its route tasks, verifying whether it is necessary to transfer part of its jobs to 
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other vehicle agents or not, and evaluating the possible acceptance of tasks proposed by other 
vehicle agents. The task assignment agent prepares in advance the sequence of tasks for each 
vehicle agent, modifies them whenever external requests make it necessary (requests from 
clients or suppliers), keeps a register of failures, driver’s performance, etc., for further 
analysis and corrections, and distributes the performance results (positive and negative) to the 
participating agents. Finally, the auction manager agent supervises the bidding process of 
tasks that occurs among vehicle agents. It evaluates all bids and interferes in the process in 
case the vehicle agents cannot reach a reasonable agreement. For example, it is possible that 
the vehicles assigned to the routes are not able to perform themselves all the tasks in excess at 
a certain moment. Then, the auction manager agent transfers those tasks, partially or totally, 
to the task assignment agent, which allocates one or more vehicles from the depot to perform 
the exceeding jobs.  
 
The acceptance of an additional task by a vehicle agent will lead to a new vehicle scheduling 
route, for which there will be several sequential alternatives. For example, one may insert the 
new job at various positions in the current route sequence, or one may shuffle the entire 
schedule to find a new optimum route (Mes et al, 2007). Also, the vehicle agent that is 
offering tasks to be transferred to other vehicles can choose the jobs to be submitted to the 
auction, and will analyze the ones that suit him best to transfer. Of course, the auction 
manager agent, which has access to the information originating from all the vehicle agents, 
may interfere in the process if the individual vehicle agent propositions result in schemes too 
far from the overall optimum.  Another important consideration is that the transfer instants 
along the route vary substantially (see Figure 5), and therefore it might happen that the other 
vehicle agents will not bid for the offered tasks when the auction occurs late during the cycle 
time. Another important point is the definition of fixed periods between auctioning of tasks. 
At the beginning of the daily cycle, there will not be enough information to justify an auction. 
So, depending on the specific characteristics of the problem, the starting point of the auctions 
and their periodic intervals must be defined, based on a simulation analysis. 
 
8. CONCLUSIONS 
The core of an agent-based decision structure intended to define a transferring task process 
among vehicle agents has been described and analyzed. Its objective is to effectively reduce 
non-performed tasks along a daily vehicle routing cycle, thus improving the logistic service 
level in an urban picking-up process subject to occasional over-congested traffic conditions. 
In a subsequent research, the authors will analyze in detail the routing process of the 
transferred tasks, plus the auctioning rationale and the reward/penalty modeling, the latter 
intended to give the economic and operational support to the agent’s bidding process.  
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