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ABSTRACT 
Developing precise travel behavior models is important for estimating traffic demand and consequently, for planning 
transportation systems. The objective of this study is to suggest a hybrid model, which combines a stochastic model 
with a neuro-fuzzy inference system. The model is applied for estimating travelers’ behavior in the context of the 
transport mode choice problem. Particularly, the multinomial logit model with neuro-fuzzy utility functions is 
developed to investigate shopping travelers’ preferences regarding the modes of bus, subway and automobile. The 
model is evaluated by comparing its results with the actual transport mode choices. The model showed good 
performance by estimating an expressive number of right choices during the validation process. Furthermore, the 
obtained probabilities of selecting a transport mode were coherent with the survey results. The results show that the 
model is able to describe the uncertainties concerning travelers’ decisions on the time of transport mode choice. 
 
RESUMO 
O desenvolvimento de modelos de comportamento de viagem adequados é importante para a estimativa da demanda 
de tráfego e consequentemente, para o planejamento de sistemas de transporte. O objetivo deste estudo é propor a 
combinação de um modelo estocástico a um sistema inferencial neuro-fuzzy, que é aplicado na estimativa do 
comportamento de usuários durante o processo de escolha modal. Particularmente, o modelo logit multinomial, 
composto por funções utilidade neuro-fuzzy, é usado para investigar viagens de compras considerando os modos 
ônibus, metrô e automóvel. O modelo é avaliado comparando-se os resultados estimados aos resultados da pesquisa. 
Este mostrou bom desempenho durante o processo de validação, estimando corretamente uma parcela considerável 
da amostra, além de apresentar coerência na estimativa da probalibidade de seleção dos modos de transporte. Os 
resultados mostram que o modelo descreve corretamente as incertezas referentes às decisões dos usuários no 
momento da escolha do modo de transporte. 
 
1. INTRODUCTION 
Travel behavior models are valuable tools in the field of traffic demand estimation. These models 
provide information about travelers’ preferences. This information is required in the design and 
planning, among other areas, of transportation systems. Since several decades, statistical models 
have been largely applied to solve traffic and transportation problems. However, researchers 
usually face difficulties to interpret the uncertainties inherent to the real-life choice behavior 
problems while using exclusively mathematical models (Teodorovic, 1999). Lee et al. (2003) 
point that the uncertainties regarding travelers’ decisions are composed of two types, the 
randomness and the vagueness. The former is due to the non-deterministic nature of choice 
behavior while the later is due to the lack of familiarity with the choice alternatives. Therefore, 
the travel behavior model would correctly describe both kinds of uncertainties to be adequate. 
 
In the last decades, several models have been suggested to deal with the different uncertainties. 
This new category of travel behavior models includes statistical methods and various techniques 
of soft computing, such as Fuzzy Logic (FL), Neural Network (NN) and Genetic Algorithm (GA). 
Among the stochastic models, the well-known logit models are effective tools. There are some 



studies in which new models, which can be called hybrid models, are presented with promising 
results (Akiyama et al., 1999). Among the hybrid models, fuzzy reasoning is successfully applied 
to describe various aspects of travel behavior. However, few of these studies deal with adaptive 
learning approaches (Lee et al., 2003; Mizutani and Akiyama, 2001). In these studies, the 
characteristics of the initial fuzzy inference systems are exclusively based on the designer’s 
judgment, which is a disadvantageous characteristic as long as it deals with human behavior 
modeling. In this context, the neuro-fuzzy systems arise as an interesting option for reducing the 
errors regarding human judgment. Summarily, the main task of adaptive systems, such as neuro-
fuzzy systems, is to find an appropriate architecture and a set of parameters which should be the 
best for modeling an unknown target system that is described by a set of input-output data pairs 
(Jang, 1997). 
 
In this study, an adaptive neuro-fuzzy multinomial logit model is proposed. The overall structure 
is based on the logit model. However, the adaptive utility function is described by a neuro-fuzzy 
inference system. By using the neuro-fuzzy utility function into the discrete choice formulation, a 
better description of the combination of the vagueness uncertainty and the randomness 
uncertainty is expected. The model, which can be named neuro-fuzzy multinomial logit (NFML) 
model, is developed to the transport mode choice problem. The preferences of shopping travelers 
regarding the transport modes of bus, subway and automobile are investigated. The results of the 
estimation are evaluated and compared with the survey results, which show good performance of 
the proposed model. 
 
2. BASIC STRUCTURE OF LOGIT MODELS 
Logit models, based on random utility theory, are well established as discrete choice models. By 
adopting this model, the basic assumption is that a traveler will select the transportation mode 
which provides the maximum utility in the economic sense (Ben-Akiva and Lerman, 1985). The 
utility of an alternative i for a person n is described in the following equation: 
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where Vin, usually described by a linear function, is the deterministic term of the utility of 
alternative i, while the second term (εin) is the random variable for the utility. By following the 
choice theory, the probability of selecting an alternative i, in a multinomial process, is given by: 
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where Cn is the set of alternatives. The least squares method can be applied for estimating the 
parameters of logit models (Ben-Akiva and Lerman, 1985). Moreover, the least squares method 
proves to be an essential tool for constructing linear mathematical models, which can be extended 
to non-linear models as well (Jang, 1997). Thus, this method provides important mathematical 
basis for solving neuro-fuzzy modeling problems (Yager and Filev, 1994). In general, the model 
parameters are estimated by minimizing: 
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with respects to the parameters, where N is the number of samples. In this equation, yin is equal to 
1 if person n selects alternative i, 0 otherwise. 
 
3. THE DATA 
A questionnaire survey was carried out by targeting shopping travelers who live in the district of 
Shin-Sapporo, Sapporo – Japan. In this study, shopping travelers are focused because of the 
intrinsic high level of uncertainty regarding the transport mode choice behavior on the time of 
shopping trips. The travelers’ preferences regarding the transport modes of bus, subway and 
private automobile, which are available for the respondents, were investigated. Specifically, two 
commercial zones in the downtown of Sapporo city were assumed as destination areas. 
 
The objectives of the survey were to explore the factors which influence the transport mode 
choice, to find out the actual preferences of transport mode, and to find out the response to 
changes in the characteristics of the modes. The questionnaire consisted of two parts, in which 
the first part included fourteen short questions, while the second part included 6 profiles of stated 
preference (SP) survey aimed to capture travelers’ response for variations on the attributes. 
 
Primarily, the factors included in the SP profiles are travel time, walking time, waiting time and 
cost. The attributes were organized by profile as showed in Figure 1. In this study, only the 
attribute Time-in-Vehicle (TV) was included in the NFML model. A summary of the levels of 
this attribute is presented in Table 1. The levels of the variables were selected in order to 
correspond to the reality of the study area. Therefore, the real values of time-in-vehicle were 
included, as well as, possible lower and higher values. 
 
One thousand questionnaires were randomly distributed. From these, 192 were returned giving a 
recovery rate of 19.2 percent. The final valid sample size was composed of 160 questionnaires 
since 32 were incomplete or filled out by incorrect answers. Although the number of questions 
was kept at minimum to increase the willingness of respondents, the response rate was considered 
to be low. 
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Figure 1: Example of Profile Included in the SP Survey 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1: Levels of the attribute Time-in-Vehicle included in the Survey 
Transport Mode Levels of Variable TV (min.) 

Bus 20, 35, 50 
Subway 10, 20, 30 
Car 15, 30, 45 

 
3.1. Characteristics of the Data Sample 
In the data sample, 58 percent of the respondents were females and 42 percent were males. The 
highest percentage of respondents was in the category of 33 to 44 years old contributing in 36 
percent of the total, followed by 32 percent within 45 to 60 years old range. The remaining was 
distributed as 19 percent for respondents exceeding 60 years old and 13 percent within 18 to 29 
years range. The questionnaire was addressed to adult people, i.e., there are no children less than 
18 years old included in the samples. Vehicle availability is also a classic explanatory variable for 
mode choice. In the data sample, 21 percent of the respondents do not own automobile, 71 
percent of the respondents own one vehicle and 9 percent of them own two or more automobiles. 
 
Among all hypothetical scenarios, subway was the most favorite mode as it was chosen by 63 
percent of the respondents, followed by 29 percent of respondents who choose private automobile, 
while bus was the least preferred mode chosen by only 8 percent of the respondents. However, it 
is important to highlight the influence of stated preference exercises in the respondents’ answers, 
which can be different from their choice in the real life. 
 
4. FRAMEWORK OF THE NEURO-FUZZY MULTINOMIAL LOGIT MODEL 
The methodological procedure of the NFML model is summarized in Figure 2. The neuro-fuzzy 
utility functions were estimated by using the optimization algorithm proposed by the Fuzzy Logic 
Toolbox (Version 2) of the software Matlab 7.0 (Matlab, 2001) by trial and error manner. In the 
adaptive neuro-fuzzy optimization process, the named hybrid learning rule was applied for 
identifying the output parameters. The hybrid learning rule combines steepest descent (SD) and 
least squares estimator (LSE) for identifying the parameters of the consequent part of the 
inferential rules (Jang, 1997). Specifically, three independent first-order Sugeno fuzzy inference 
systems were developed and trained to describe the utilities of modes bus, subway and 
automobile. Each FIS is composed of four input (TVbus, TVsub, TVauto, Car) and one output 
[Utility of mode – Ui, ∀ i ∈ (bus, subway, auto)). The FISs were trained by using 80% of the 
eligible data (768 input-output pairs). The remaining 20% input-output pairs (192 pairs) were 
used as holdout data for verifying the model. Since the mode choice behavior of all travelers is 
assumed to partially depend on the characteristics of the three modes, the set of input variables 
and the fuzzy rules were the same for the three FISs. 
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Figure 2: Sequential Procedure of the NFML Model 
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The general rule form of the fuzzy inference model is: 
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where TVbus, TVsub, TVauto and Car are linguistic variables corresponding to the input variables; zk 
is the control variable, which is a crisp function to be used for Sugeno fuzzy models; Ak, BBk, Ck 
and Dk are the linguistic predicates of the input linguistic variables; and K is the number of fuzzy 
rules. In this study, Ak, BkB , and Ck characterize possible time-in-vehicle by bus, subway and 
automobile, respectively, while Dk characterizes the possibility of owning a car. Figure 3 
illustrates the membership functions of the antecedent terms of the fuzzy rules. 
 

Figure 3: Membership Functions of Antecedent Terms of Fuzzy Rules 
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The parameters of the antecedent part of the fuzzy inference rules were set up based on the 
evaluation of the characteristics of the input data set. As a process used by adaptive neuro-fuzzy 
inference systems, the initial values of the antecedent parameters can be defined in a way that the 
centers of the MFs are equally spaced along the range of each input variable (Jang and Mizutani, 
1997). Then, the parameters of the membership functions, i.e. δk1, δk2, δk3, δk4 and αk, are 
optimized to approach the final membership range. 



In the NFML model, a total of 54 fuzzy inference rules (3x3x3x2 linguistic values) were 
automatically generated to model the decision-making process of travelers. Figure 4 illustrates a 
summarized example (for 2 rules and 2 input variables) of the fuzzy inferential system used for 
estimating the neuro-fuzzy utility functions. 
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Figure 4: Inferential System used for estimating the Neuro-Fuzzy Utility Functions 

 
The weighted average ( AW ) method is applied for the defuzzification (Equation 6) in order to 
define Vin. In this study, Vin is assumed to correspond to the systematic components of the 
random utility model. In this case, the probability of individual n select mode i in the choice set 
Cn can be written as in Equation 7. 
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5. MODEL BEHAVIOR EVALUATION 
Initially, the estimated results per transport mode were compared with the observed results, which 
are detailed in Table 2. The fitness of the model is defined as the proportion of samples correctly 
predicted. The NFML model succeeded in estimating 148 samples from the total of 192 data 
pairs, which provided approximately 77% of fitness for the model. It was clear that the model 
presented good performance, especially by estimating the choices of the modes subway and 
automobile. However, the number of correct predictions regarding the mode bus was considered 



to be low. This error can be a result of the low percentage of selection of this mode among the 
training data samples. Thus it is expected that the use of a larger training data set could reduce the 
error in the prediction of mode bus. As a consequence, lower error could be expected for the 
estimation of the other two modes. 

 
Table 2: The Estimation Results by the NFL Model 

Estimation Mode Bus Subway Automobile Total 

Bus 
 

6 8 7 21 
Subway 
 

6 114 11 131 

O
bs

er
va

tio
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Automobile 
 5 7 28 40 

Total 17 129 46 192 
Number of samples estimated correctly 148 
Fitness ratio (%) 77.08 

 
Next, the probabilities of selecting a transport mode were estimated and compared with survey 
results. Figure 5(a) summarizes the utility functions obtained for the three modes. These results 
show higher preference by the mode subway (Figure 5(b)). It is observed that the probability of 
selecting mode subway was underestimated while the probabilities of selecting modes bus and 
subway were overestimated if compared with actual choices. Despite this difference, the model 
demonstrated good performance. 
 

(a) Values of mode utility functions 
 Ut(bus) Ut(subway) Ut(auto) 
Utility -1.090 0.538 0.197 
(b) Estimated probabilities of selecting transport mode 
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Figure 5: Model Estimation X Survey Results 

 
Finally, by assuming that time-in-vehicle is a function of service frequency, a sensitivity analysis 
was performed in order to demonstrate the influence of time variations of mode subway on the 
probabilities of selecting a transport mode (Figure 6). By this figure, it is observed that whenever 



the travel time of subway increases, the probability of selecting this mode decreases while the 
probabilities of selecting the modes automobile and bus increase. Furthermore, Figure 6 shows 
that after a certain travel time (approximately 27 minutes) the probability of selecting mode 
automobile becomes higher than the probability of selecting mode subway. This result 
demonstrates that travelers shift to other modes, especially to the mode automobile, whenever the 
travel time by subway becomes longer. 
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 Figure 6: Effect of Variation of Travel Time by Subway on the Transport Mode Choice 
 
6. CONCLUSION 
A multinomial logit model with adaptive neuro-fuzzy utility functions for the mode choice 
problem was suggested in this paper. The NFML model, which is structurally based on the 
multinomial logit model, has incorporated fuzzy input variables to describe the vagueness 
uncertainty inherent to the decision making process of shopping trip makers. Furthermore, the 
model has described the vagueness by adopting fuzzy inference rules with linear crisp outputs. 
On the other hand, the randomness is well described by the logit structure of the model. The 
results showed that the parameters of the consequent linear functions were effectively estimated 
by using the hybrid learning rule, which combines steepest descent and least-squares estimator. 
 
The results showed good performance of the model. The trained networks were used to estimate 
transport mode choice in the validation data set, which showed reasonable rate of right answers. 
Particularly, promising results were obtained for the estimation of modes subway and automobile. 
However, the model has not presented good performance by estimating selection of mode bus. 
For further studies, it has been planned to improve the training data set in order to deal with this 
problem. In addition, the probabilities of mode selection demonstrated quite good performance of 
the model. Although the probability of selecting mode subway was underestimated and the 
probabilities of selecting modes bus and subway were overestimated, the results seem to be 
reliable if compared to the survey results. Finally, the influence of variations of time by subway 
on the probability of selecting a transport mode was evaluated, which showed the high influence 
of the travel time by subway on the transport mode choice. 



 
For further studies, other important variables should be incorporated to the model, such as travel 
cost and access time. By attempting to improve the explanatory power of the implication rules, 
different inferential strategies could be examined. Moreover, the neuro-fuzzy multinomial logit 
model should be applied to other complex discrete choice problems in order to acquire further 
knowledge about different aspects of travel behavior. 
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